home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Internet Info 1993
/
Internet Info CD-ROM (Walnut Creek) (1993).iso
/
inet
/
internet-drafts
/
draft-ietf-sip-discovery-02.txt
< prev
next >
Wrap
Text File
|
1993-06-16
|
110KB
|
3,523 lines
Network Working Group W A Simpson
Internet Draft Daydreamer
expires in six months June 1993
SIP System Discovery
Status of this Memo
This memo is the product of the SIP Working Group of the Internet
Engineering Task Force (IETF). Comments on this memo should be
submitted to the sip@caldera.usc.edu mailing list.
Distribution of this memo is unlimited.
This document is an Internet Draft. Internet Drafts are working
documents of the Internet Engineering Task Force (IETF), its Areas,
and its Working Groups. Note that other groups may also distribute
working documents as Internet Drafts. Internet Drafts are draft
documents valid for a maximum of six months. Internet Drafts may be
updated, replaced, or obsoleted by other documents at any time. It
is not appropriate to use Internet Drafts as reference material or to
cite them other than as a ``working draft'' or ``work in progress.''
Please check the 1id-abstracts.txt listing contained in the
internet-drafts Shadow Directories on nic.ddn.mil, nnsc.nsf.net,
nic.nordu.net, ftp.nisc.sri.com, or munnari.oz.au to learn the
current status of any Internet Draft.
Abstract
This document specifies ICMP messages for the identification and
location of adjacent SIP systems. This is intended to replace ARP,
ICMP Router Advertisement, ICMP Redirect, ICMP Information, ICMP
Mask, and OSPF Hello in the SIP environment. There are also elements
of the OSI ES-IS and IS-IS Hello.
Simpson expires in six months [Page i]
DRAFT system discovery June 1993
1. Terminology
The following terms have a precise meaning when used in this
document:
system a device that implements the Internet Protocol, IP [9].
intermediate-system
a system that forwards datagrams, as specified in [2].
Often called a router or gateway. This does not include
systems that, though capable of forwarding, have that
capability turned off. Nor does it include systems that
do forwarding only as required to obey Source Route
options.
end-system any system that is not acting as an intermediate-system.
Often called a host.
dumb the minimal implementation. This is not meant in a
perjorative sense. It is intended that every mechanism
be defined in such a way that it is implementable on a
minimal system.
smart an improved implementation, possibly requiring more
internal resources, while using less external resources.
multicast unless otherwise qualified, means the use of either IP
multicast [4] or IP broadcast [6] service.
link a communication facility or medium over which systems
can communicate at the link layer; that is, the protocol
layer immediately below IP. The term "physical network"
has sometimes been used (imprecisely) for this.
Examples of links are LANs (possibly bridged to other
LANs), wide-area store-and-forward networks, satellite
channels, and point-to-point circuits.
multicast link a link over which IP multicast or IP broadcast service
is supported. This includes broadcast media such as
LANs and satellite channels, single point-to-point
circuits, and some store-and-forward networks such as
SMDS networks [8].
interface a system's attachment point to a link. It is possible
(though unusual) for a system to have more than one
interface to the same link.
multicast interface
an interface to a multicast link; that is, an interface
Simpson expires in six months [Page 1]
DRAFT system discovery June 1993
to a link over which IP multicast or IP broadcast
service is supported.
identifier uniquely identifies each interface; a single interface
may have more than one such identifier.
primary identifier
uniquely identifies each system; only one such
identifier is used, to simplify discovery of neighbors.
subnet either a single link of a subnetted IP network [7] or
a single non-subnetted link.
prefix the part of an identifier which may be used for routing
to a particular subnet, defined by logically ANDing with
its assigned subnet mask. More than one subnet prefix
may identify the same link.
zone the part of a special identifier which indicates a
unique subnet within an administrative domain.
neighbor having an identifier belonging to the same subnet.
2. Criteria
Historically, the methods for discovery of the next-hop evolved
separately from those for location of neighbors and auto-
configuration of systems. With the advent of SIP, the old techniques
must be re-implemented, usually due to larger field sizes.
Unfortunately, older implementations frequently did not take proper
care in differentiating existing variable field lengths, version
numbers, and new types of messages. Therefore, the techniques used
for SIP are required to be distinguishable from previous versions.
None of the current protocols are readily extensible. While some
have the ability to change in simple terms, such as larger addresses,
none were designed to add new kinds of information to be carried in
the same packet.
This can be viewed is an opportunity to design a uniform and coherent
method for accomplishing these goals, rather than a liability.
Through prior experience, the following criteria were established, in
order of relative importance. It is understood that many of these
criteria may conflict, and require numerous tradeoffs.
Simpson expires in six months [Page 2]
DRAFT system discovery June 1993
Multicast support
All SIP systems are required to support multicast.
This is the primary technique for distinguishing the new messages.
Older systems will ignore multicast messages at the link layer.
There are numerous other advantages to using multicast for the new
messages. In particular, when compared to broadcast, reduced
overhead for processing messages which are not ultimately intended
for the local system.
Not all media supports multicast. Since multicast is directly
supported by the SIP header, this technique will work even when
using link-layer broadcast, or link-layer unicast to each
recipient.
Reduced net traffic
Currently, there are separate packets sent for media address
resolution, router discovery, and the Hello protocols for the
various routing algorithms. Since much of the same information is
contained in each of these packets, it would be helpful to combine
the functions in a single packet where possible.
Also, the most common next-hop resolution protocol, the Address
Resolution Protocol (ARP), requires an additional two packets at
the beginning of each connection. The Request is sent, a Reply is
received, and then the first datagram can be sent to the next-hop.
This causes a significant amount of traffic, and considerable
latency in establishing a connection.
Several alternative methods were proposed:
1) The ISO solution (ES-IS) eliminates some of these problems.
Each end-system and intermediate-system sends Hellos on a
periodic basis. Every system must remember all of the media
addresses for the other systems on the local network. This
does eliminate the latency of ARP, at the expense of many
additional packets sent on a regular basis, and a large
amount of storage overhead in each system.
2) The first packet destined for an unknown system may be sent
to the all-systems multicast, or to a media multicast based
on a hash function of the destination. The appropriate
system accepts the packet, and sends a redirect indicating
the appropriate media address to be used for future packets.
This reduces the traffic from 3 to 2 packets at the
Simpson expires in six months [Page 3]
DRAFT system discovery June 1993
beginning of a connection, and eliminates the latency, as
the discovery packet sent is also the data packet. The
destination identifer in the network header will be unicast,
while the media address will be multicast. Intermediate-
systems would require extra intelligence to recognize those
packets destined beyond the local link, while multi-homed
end-systems require that capability already. Also, this
method is not extensible to include other information useful
in mobile environments.
3) Using advertisements for the (fewer) intermediate systems,
and an ARP-like protocol for those end-system connections
that are on the local media. For those packets which are
clearly destined off the local media, the packet can be sent
directly to the appropriate intermediate system. When most
of the traffic is between systems that are not on the same
local media, this is very efficient. When most of the
traffic is between end-systems on the local media (client-
server), the extra discovery packets will be rare.
The solution that is detailed here is a combination of the best
features of the preceding techniques.
Intermediate-systems advertise their locations. When an
intermediate-system needs the location of an end-system, it
requests the location of the end-system, and the end-system
replies. Knowledge about end-systems is concentrated in the
intermediate-systems, but only for the systems that are actually
communicating.
End-systems send all datagrams directly to the intermediate-
systems. If there is a more direct path to the end-system,
because it is directly accessible on the local link or another
intermediate-system would be more appropriate, the intermediate-
system issues a redirect.
Also, by carrying media addresses within the advertisements and
redirect packets, a further ARP-like query/response can be avoided
entirely.
Low storage overhead
It is desirable that systems require as little storage overhead as
possible. In particular, mobile systems often have significantly
reduced processing power and memory.
An end-system need only retain information for those end-systems
with which it is directly communicating.
Simpson expires in six months [Page 4]
DRAFT system discovery June 1993
This design requires sufficient storage in an end-system for
information about at least one intermediate-system. In addition,
storage is required for at least one location of each service
(such as a domain name server) which is used.
An intermediate-system may require more processing power and
memory. Participation in routing protocols requires the knowledge
of every neighboring intermediate-system.
When subnet prefix-routing is in use, it is not necessary for an
intermediate-system to determine the location of an end-system
until traffic for the end-system arrives. If prefix-routing is
not used, particularly in radio and mobile environments, the
location of each reachable end-system must be continuously
retained.
Auto-configuration
It would be highly desirable that the connection procedures for a
configuring a new system are reduced to the minimal set of "plug
it in, turn on the power, and run".
- Each system, or more precisely each interface, should be
assigned an identifier, within the number space assigned to the
local subnet.
- Each system should be assigned a name within the local domain.
The name, and the associated identifiers, should be registered
in the local domain name server.
- The system should discover the external routes provided by the
intermediate-systems attached to the local subnet, so that it
can exchange packets with remote systems.
- The system should discover the location of servers that it
needs for configuration, loading, dumping, printing, and other
services.
In evaluating previous experience with autoconfiguration
procedures, the following constraints were determined:
1) It is not possible to embed an IEEE-802 component within
every SIP identifier, since the remaining prefix would be
too small for global routing. Using the 48-bit IEEE-802
number to identify one system within a local network that is
not designed to accomodate more than a few hundred systems
is considerable overkill. It may be worthwhile to use the
address during initial configuration.
Simpson expires in six months [Page 5]
DRAFT system discovery June 1993
2) Random identifier assignments are to be avoided. They do
not scale well to large networks, are difficult to track and
manage, and lead to administrative confusion. Relying on
broadcast collision resolution procedures for avoiding
duplicate assignments results in conflicts when systems
occupy partitioned subnets, or are frequently powered down
or taken off-line.
3) Reassignment of identifiers should be transparent to the
human users. In particular, renumbering, and assignment of
alias identifiers as a mobile system moves should be
automatic.
4) End-system users should not be concerned with routing
prefixes, or the routing methods extant on the local
network. When used, such prefixes should be automatically
determined, and dynamic changes should propagate
automatically.
5) It is important to allow users to choose a system name which
is memorable and comfortable to them. The name should be
automatically registered, and changes to the associated
identifers should be maintained automatically.
This design handles initial self-identification and propagation of
changes in identification. Other aspects of configuration, such
as loading the operating system and environment, and additional
facilities and servers for registration, are specified elsewhere.
Mobility support
This is sometimes considered a subset of the above, as related to
dynamically changing addresses while moving. Other systems must
be notified of the changes.
In addition, the "hidden transmitter" problem is considered (you
can hear another system, it can't hear you, but there is a path to
a third system which it can hear, completing the circuit). This
is not well supported in any of the past protocols.
Although basic support for mobility is provided, descriptions of
additional facilities and servers are specified elsewhere.
Black hole detection
In determining whether the next-hop system is still available,
there is a basic tradeoff between frequent queries and resources
used. This design trades fewer queries against more information
Simpson expires in six months [Page 6]
DRAFT system discovery June 1993
within each query and response.
Explicit holding times are used to limit the exposure to black
holes. The times may be dynamically shortened by the responsible
system when a resource is critical, or when the system is actively
moving.
Media independence
There are many instances where system discovery is accomplished
differently over different media, such as point-to-point versus
broadcast versus Large Public Data Networks. This design places
the system discovery above the network layer, where it enjoys
greater independence. It also encompasses media level redirects
between multiple logical subnets on the same physical media.
There are difficulties with carrying media addresses within
packets, especially in the presence of multi-media bridges.
Rather than allowing translation by bridges in the path, this
design exercizes control at the destination system, and requires
all such media addresses to be in canonical form,
Optimal route determination
This is essentially a superset of next-hop discovery, combined
with resource reservation and possible policy considerations, and
the ability to redirect traffic under changing conditions. This
is not well supported in any of the past protocols.
To balance system overhead against network traffic, this design
attempts to adapt to a continuum of system capabilities. Dumb
end-systems may simply send packets to a default intermediate-
system, and be redirected to the correct next-hop by more capable
intermediate-systems. Smarter end-systems learn sufficient
information to make informed choices.
Simplicity
All of the above desires, and they want to keep it simple, too.
This design reduces the number of packet types which must be
supported in a pure SIP system, and reduces the number of systems
which recognize and respond to each type. The extensions are
designed with 32 and 64 bit boundaries for efficient processing.
Simpson expires in six months [Page 7]
DRAFT system discovery June 1993
3. Design Overview
This proposal describes two packets, not much different from those
already deployed. These familiar forms are re-packaged to join
common functions into the same packet to reduce traffic, and are
designed to be more extensible in the future.
In order to foster media independence, the packets are part of ICMP,
which allows the protocols to be used over broadcast, multicast,
partial-mesh, and point-to-point media. This is similar to the
positioning of ES-IS.
The Where-Are-You solicitation is used to find other systems, and
associated resources and services. General solicitations are sent
when a system interface is initialized. Specific solicitations are
sent when one system is ready to communicate with another particular
system.
The I-Am-Here advertisement is the answer to the Where-Are-You
solicitation. Advertisements are also sent on a periodic basis to
indicate special resources and services. Periodic advertisements
from a few commonly requested systems result in less traffic than
repeated solicitations from many systems.
Each advertisement includes a lifetime field, specifying the maximum
length of time that the advertisements are to be considered valid in
the absence of further advertisements. This ensures that other
systems eventually forget about systems that become unreachable,
whether that is because the system has failed, or it no longer
provides the advertised service.
Each message contains "optional" extensions, designed to allow
flexibility and extensibility.
One of the common extensions is the media address. Each message
contains enough information to return a reply directly to the sender,
without additional location traffic.
Another common extension is a list of the intermediate-systems which
have been heard. This allows intermediate-systems to build a map of
the paths between intermediate-systems, and between intermediate-
systems and end-systems. This is designed to be used by most
commonly deployed routing protocols. This also solves the "hidden
transmitter" problem, when used together with the well-known link-
state class of routing protocols.
Several methods of routing are supported.
Simpson expires in six months [Page 8]
DRAFT system discovery June 1993
3.1. System Identification
Zone
A Zone is defined to be a collection of links which may be
accessed as the same next-hop. A Zone is usually a single link,
or a collection of bridged links. When a single intermediate-
system is connected to multiple point-to-point links, these links
may be collected into a single zone.
The Zone number is a fixed size. The value 0 is only used to
indicate the local zone. The values 1 through 255 indicate each
zone within an administrative domain.
Zone numbers may be combined with an interface media address to
make a locally significant identifier. This is useful for initial
configuration and local communication within the administrative
domain. These identifiers may be routed in a similar manner to
prefix-routed subnets.
The generation of these local identifiers depends upon the
availability of a registered unique number, such as an IEEE-802
number. When there is no IEEE-802 number to be found anywhere in
the machine, such as when the machine is connected exclusively to
point-to-point links, an external link-level mechanism MUST be
used to negotiate a unique identifier. Such a mechanism is beyond
the scope of this document.
Prefix
A Prefix is similar to a Zone, in that it identifies a collection
of links which may be accessed as the same next-hop. The Prefix
may indicate a single zone, a collection of zones, an entire
administrative domain, or a collection of administrative domains.
The Prefix is variable in size. The Prefix Size ranges from 1 to
62. The value of 63 cannot be used, since at least 2 bits of the
SIP 64-bit identifier are reserved to identify a particular
system.
Prefix-routed subnet identifiers are supported for addressing
globally connected networks in the metropolitan and/or provider
addressing models.
End-Point Identifiers
End-Point identifiers, or any other globally unique identifier,
Simpson expires in six months [Page 9]
DRAFT system discovery June 1993
may be used with future routing techniques. An End-Point
Identifier is indicated as having a Prefix Size of 0. A mobile
system may be treated as having an End-Point Identifier when it
appears in a prefix-routed subnet, since it will not have the same
prefix as other systems in the subnet.
Facilities are provided for exchange of redirects and translation
between the various forms of identifiers.
3.2. Multicast Support
Every SIP system MUST join the all-systems multicast group on all
interfaces on which the system supports multicast.
Every SIP intermediate-system MUST also join the all-routers
multicast group.
Every SIP end-system which offers a particular service MUST also join
the multicast group for that service. Intermediate-systems do not
join the service multicast group, as their services are discovered
under a separate process.
Simpson expires in six months [Page 10]
DRAFT system discovery June 1993
4. Intermediate-System Discovery
Before an end-system can send datagrams beyond its directly attached
link, it must discover the location of at least one operational
intermediate-system on that link. This is accomplished through
intermediate-system advertisement messages.
The intermediate-system advertisements also serve to indicate zone
and subnet prefixes for each link, and to establish neighbor
relationships with other intermediate-systems.
Each intermediate-system periodically sends the I-Am-Here message to
advertise its forwarding capability. End-systems and intermediate-
systems discover the location of their neighboring intermediate-
systems simply by listening for the advertisements. This eliminates
the need for manual configuration of intermediate-system addresses
and is independent of any specific routing protocol.
The advertisement messages do not constitute a routing protocol,
although they might be used by a routing protocol to build a map.
They enable systems to discover the existence of neighboring
intermediate-systems, but not necessarily which intermediate-system
is best to reach a particular destination. If a system chooses a
poor intermediate-system for a particular destination, it should
receive a redirect from that intermediate-system.
However, the advertisements often contain sufficient information to
make a good choice of first-hop. This may be important for choosing
among intermediate-systems which are participating in a security
group or policy-based routing.
4.1. Solicitations
Every SIP end-system MUST implement Intermediate-System Solicitation.
When any end-system starts up, it MUST send the Where-Are-You
solicitation to prompt the advertisement of intermediate-systems.
This is also used by the intermediate-systems to construct a map of
accessible end-systems, to discover partitions in the local subnet,
and to support mobile systems.
If (and only if) no advertisements from neighboring intermediate-
systems are forthcoming, the end-system MAY retransmit the Where-
Are-You a small number of times, but then MUST desist from sending
more solicitations.
Any intermediate-systems that subsequently start up, or that were not
Simpson expires in six months [Page 11]
DRAFT system discovery June 1993
discovered because of packet loss or temporary link partitioning, are
eventually discovered by reception of their periodic (unsolicited)
advertisements. Links that suffer high packet loss rates or frequent
partitioning are accommodated by increasing the rate of
intermediate-system advertisements, rather than increasing the number
of solicitations that end-systems are permitted to send.
4.1.1. Constants
MAX_SOLICITATIONS 3 transmissions
MAX_SOLICITATION_DELAY 1 second
SOLICITATION_INTERVAL 3 seconds
4.1.2. Implementation
The intermediate-system solicitation is sent to the all-routers
multicast, with the scope set to local.
An end-system is required to transmit up to MAX_SOLICITATIONS Where-
Are-You messages from any of its interfaces after any of the
following events:
- The interface is initialized at system startup time.
- The interface is reinitialized after a temporary interface failure
or after being temporarily disabled by system management.
- The system has its forwarding capability turned off by system
management.
If a system chooses to send a solicitation after one of the above
events, it should delay transmission for a random amount of time
between 0 and MAX_SOLICITATION_DELAY. This serves to alleviate
congestion when many systems start up on a link at the same time,
such as might happen after recovery from a power failure.
It is recommended that systems include some unique value (such as one
of their interface or link-layer identifiers) in the seed used to
initialize their pseudo-random number generators. Although the
randomization range is specified in units of seconds, the actual
randomly-chosen value should not be in units of whole seconds, but
rather in units of the highest available timer resolution.
The small number of retransmissions of a solicitation, which are
Simpson expires in six months [Page 12]
DRAFT system discovery June 1993
permitted if no advertisement is received, should be sent at
intervals of SOLICITATION_INTERVAL seconds, without further
randomization.
Upon receiving a valid advertisement from any intermediate-system
subsequent to one of the above events, the system MUST NOT send any
solicitation on that interface (even if none have been sent yet)
until the next time one of the above events occurs.
4.1.3. Receipt
An end-system MUST silently discard any received Intermediate-System
Solicitation messages.
An intermediate-system MUST silently discard any received
Intermediate-System Solicitation messages that do not satisfy the
following validity checks:
- ICMP Checksum is correct.
- ICMP length (derived from the payload length) is 16 or more
octets.
- Source Address is either 0 or the identifier of a neighbor (an
identifier that matches one of the intermediate-system's own
identifiers on the arrival interface under the prefix mask
associated with that identifer, or the zone associated with that
interface).
4.2. Advertisements
Every SIP intermediate-system MUST implement Intermediate-System
Advertisements.
The intermediate-system advertisements include such important
information as the media address to access the system, other subnets
directly accessible through the system, services available through
the system, and neighboring intermediate-systems heard.
Identifiers
Each intermediate-system advertisement includes one or more
identifier fields. These indicate the identifiers which are
presently in use for each interface of the intermediate-system.
Simpson expires in six months [Page 13]
DRAFT system discovery June 1993
Zone
Each advertised identifier includes a zone field. The value
ranges from 0 to 255, and indicates a subnet number which is
unique to the administrative domain. A value of zero indicates
that no zone number has been assigned. It may be combined with an
interface media address to make a locally significant identifier.
If all advertised zone values are zero, then zone routing is not
available beyond that link. This does not prevent the use of
locally significant identifiers for communication with other
systems on the local link.
Prefix Size
Each advertised identifier includes a prefix size field. The
value ranges from 0 to 62, and indicates the number of bits in the
Identifier which define the prefix mask for the link. A value of
zero indicates an end-point identifier. When the value is not
zero, the identifier may be used to discern prefix-routed subnet
mapping.
If all advertised prefix values are zero, then subnet prefix-
routing is not in use on that link.
Preference
Each advertised identifier includes a preference field. This is
used to choose a default intermediate-system for the first-hop
when the end-system has not yet been redirected or configured to
use a specific intermediate-system for a particular destination.
The end-system is expected to choose from those intermediate-
systems that have the highest preference level for the best
prefix-routing match. When there is no match, or prefix-routing
is not in use, the preference value is used alone.
A network administrator can configure intermediate-system
preference levels to encourage or discourage the use of particular
intermediate-systems as the default first-hop. The use of
separate preferences per prefix allows the choice of different
intermediate-systems for each prefix, when there are multiple
prefixes in use for the same link. This may be useful where
multiple organizations share resources.
[I am not sure how this works when there are multiple identifiers
per end-system interface.]
The preference value is not the same as the "metric" used in many
Simpson expires in six months [Page 14]
DRAFT system discovery June 1993
routing protocols. It is used only by end-systems in determining
the default first-hop, rather than by intermediate-systems in
choosing a link for transit traffic. The values are not additive.
Therefore, the range of values is smaller, and a higher value
indicates a higher preference.
It should be understood that preference levels learned from
intermediate-system advertisements do not affect any system's
cached route entries. For example, if a system has been
redirected to use a particular intermediate-system to reach a
specific destination, it continues to use that intermediate-system
for that destination, even if it discovers another intermediate-
system identifier with a higher preference level. Preference
levels influence the choice of intermediate-system only for a
destination for which there is no cached or configured route, or
whose cached route points to an intermediate-system that is
subsequently determined to be unreachable.
4.2.1. Constants
MAX_INITIAL_ADVERTISEMENTS 3 transmissions
MAX_INITIAL_ADVERT_INTERVAL 16 seconds
MAX_RESPONSE_DELAY 2 seconds
4.2.2. Configuration
An intermediate-system MUST allow the following variables to be
configured by system management. Default values are specified which
make it unnecessary to re-configure these variables in most cases.
For each interface:
MaxAdvertisementInterval
The maximum time (in seconds) allowed between sending
intermediate-system advertisements from the interface. Must be no
less than 4 seconds and no greater than 1800 seconds.
Default: 600 seconds
MinAdvertisementInterval
The minimum time (in seconds) allowed between sending unsolicited
intermediate-system advertisements from the interface. Must be no
Simpson expires in six months [Page 15]
DRAFT system discovery June 1993
less than 1 second and no greater than MaxAdvertisementInterval.
Default: 0.75 * MaxAdvertisementInterval
AdvertisementLifetime
The value (in seconds) to be placed in the Lifetime field of
intermediate-system advertisements sent from the interface. Must
be no less than MaxAdvertisementInterval and no greater than 9000
seconds.
Default: 3 * MaxAdvertisementInterval
For each of the identifiers of each interface:
Advertise
A flag indicating whether or not the identifier is to be
advertised.
Default: TRUE
PreferenceLevel
The preferability of the interface as a default intermediate-
system choice, relative to other intermediate-system interfaces
serving the same prefix on the same link.
Values are in the range 0 to 255. Higher values mean more
preferable. The minimum value 0 is used to indicate that the
identifier, even though it may be advertised, is not to be used by
neighboring end-systems as a default intermediate-system address.
Default: 1
It is useful to configure an identifier with a preference level of 0
(rather than simply setting its Advertise flag to FALSE) when
advertisements are being used for "black hole" detection. In
particular, an intermediate-system that is to be used to reach only
specific destinations could advertise a preference level of 0 (so
that neighboring end-systems will not use it as a default
intermediate-system for reaching arbitrary destinations) and a non-
zero lifetime (so that neighboring end-systems that have been
redirected or configured to use it can detect its failure by timing
out the reception of its advertisements).
It has been suggested that, when the preference level of an
Simpson expires in six months [Page 16]
DRAFT system discovery June 1993
identifier has not been explicitly configured, an intermediate-system
could set it according to the metric of the intermediate-system's
"default route" (if it has one), rather than defaulting as suggested
above. Thus, an intermediate-system with a better metric for its
default route would advertise a higher preference level for its
identifier. (Note that routing metrics that are encoded such that
"lower is better" would have to be inverted before being used as
preference levels in intermediate-system advertisement messages.)
Such a strategy might reduce the amount of redirect traffic on some
links by making it more likely that an end-system's first choice for
reaching an arbitrary destination is also the best choice.
On the other hand, redirect traffic is rarely a significant load on a
link, and there are some cases where such a strategy would result in
more redirect traffic (on links from which the most frequently chosen
destinations are best reached via intermediate-systems other than the
one with the best default route). Also, since the routing algorithms
learn of neighboring intermediate-systems from the advertisements,
and the default routes are learned from the routing algorithms, the
calculated preference may be unstable from time to time. This
document makes no recommendation concerning this issue, and
implementors are free to try such a strategy, as long as they also
support static configuration of preference levels as specified above.
4.2.3. Implementation
The intermediate-system advertisement is sent to the all-systems
multicast, with the scope set to local.
The term "advertising interface" refers to any functioning and
enabled interface that has at least one identifier whose configured
Advertise flag is TRUE.
From each advertising interface, the system MUST transmit periodic
I-Am-Here messages.
CONTROVERSIAL:
When an intermediate-system discovers that it is receiving its own
advertisements, that is an indication that it has more than one
interface on same link. The system MUST choose only one
advertising interface for each link. Identifiers associated with
the remaining interfaces on the same link are indicated with the
Other-Identifier extension. Redirect is used to move specific
traffic to the alternate interfaces.
An intermediate-system MAY proxy for the identifers of other
Simpson expires in six months [Page 17]
DRAFT system discovery June 1993
systems, using the Other-Identifier extension. This SHOULD only
be used when the intermediate-system is translating to another
network-layer protocol format.
The advertisements are not strictly periodic. The interval between
subsequent transmissions is randomized to reduce the probability of
synchronization with the advertisements from other intermediate-
systems on the same link. This is done by maintaining a separate
transmission interval timer for each advertising interface. Each
time an advertisement is sent from an interface, that interface's
timer is reset to a uniformly-distributed random value between the
configured MinAdvertisementInterval and MaxAdvertisementInterval.
Expiration of the timer causes the next advertisement to be sent, and
a new random value to be chosen.
It is recommended that intermediate-systems include some unique value
(such as one of their interface or link-layer addresses) in the seed
used to initialize their pseudo-random number generators. Although
the randomization range is configured in units of seconds, the actual
randomly-chosen values should not be in units of whole seconds, but
rather in units of the highest available timer resolution.
For the first few advertisements sent from an interface (up to
MAX_INITIAL_ADVERTISEMENTS), if the randomly chosen interval is
greater than MAX_INITIAL_ADVERT_INTERVAL, the timer should be set to
MAX_INITIAL_ADVERT_INTERVAL instead. Using this smaller interval for
the initial advertisements increases the likelihood of an
intermediate-system being discovered quickly when it first becomes
available, in the presence of possible packet loss.
An interface may become an advertising interface at times other than
system startup, as a result of recovery from an interface failure or
through actions of system management such as:
- enabling the interface, if it had been administratively disabled
and it has one or more identifiers whose Advertise flag is TRUE,
- enabling SIP forwarding capability (changing the system from an
end-system to an intermediate-system), when the interface has one
or more identifiers whose Advertise flag is TRUE,
- setting the Advertise flag of one or more of the interface's
identifiers to TRUE (or adding a new identifier with a TRUE
Advertise flag), when previously the interface had no identifier
whose Advertise flag was TRUE.
In such cases, the intermediate-system must commence transmission of
periodic advertisements on the new advertising interface, limiting
Simpson expires in six months [Page 18]
DRAFT system discovery June 1993
the first few advertisements to intervals no greater than
MAX_INITIAL_ADVERT_INTERVAL. In the case of an end-system becoming
an intermediate-system, the system must also join the all-routers
multicast group on all interfaces on which the intermediate-system
supports multicast (whether or not they are advertising interfaces).
An interface MAY also cease to be an advertising interface, through
actions of system management such as:
- shutting down the system,
- administratively disabling the interface,
- disabling SIP forwarding capability (changing the system from an
intermediate-system to an end-system),
- setting the Advertise flags of all of the interface's identifiers
to FALSE.
In such cases, the intermediate-system SHOULD transmit a final
multicast advertisement on the interface, identical to its previous
transmission, but with a Lifetime field of zero. In the case of an
intermediate-system becoming an end-system, the system must also
depart from the all-routers multicast group on all interfaces on
which the intermediate-system supports multicast (whether or not they
had been advertising interfaces).
When the Advertise flag of one or more of an interface's identifiers
are set to FALSE by system management, but there remain other
identifiers on that interface whose Advertise flags are TRUE, the
intermediate-system SHOULD send a single multicast advertisement
containing only those identifiers whose Advertise flags were set to
FALSE, with a Lifetime field of zero.
In addition to the periodic unsolicited advertisements, an
intermediate-system MUST send advertisements in response to valid
advertisements or solicitations received on any of its advertising
interfaces. If the advertisement or solicitation does not contain
any System-Heard extension, and the time since the previous
advertisement is greater than MAX_INITIAL_ADVERT_INTERVAL, the
intermediate-system MUST multicast an advertisement from that
interface.
Whenever these response advertisements are sent, the advertisement
MUST be delayed for a small random interval not greater than
MAX_RESPONSE_DELAY, in order to prevent synchronization with other
responding intermediate-systems, and to allow multiple closely-spaced
solicitations to be answered with a single advertisement. The
Simpson expires in six months [Page 19]
DRAFT system discovery June 1993
interface's interval timer is reset to a new random value, as with
unsolicited advertisements.
4.2.4. Receipt
All systems MUST silently discard any received Intermediate-System
Advertisement messages that do not satisfy the following validity
checks:
- ICMP Checksum is correct.
- ICMP length (derived from the payload length) is 16 or more
octets.
- At least one Routing-Information extension.
- For interfaces which are not point-to-point links, the Media-
Access extension.
4.3. Processing Advertisements
Every intermediate-system saves the information contained in the
advertisements, in order to respond to future requests. Any other
action on receipt of such messages by an intermediate-system (for
example, as part of a "peer discovery" process) is beyond the scope
of this document.
An end-system saves the information contained in the advertisements,
in order to determine the first-hop when sending datagrams. First-
hop determination is elaborated in a subsequent section.
4.3.1. Configuration
The Host Requirements -- Communication Layers [1], Section 3.3.1.6,
specifies that each end-system must support a configurable list of
default intermediate-system identifiers. The purpose of the
intermediate-system discovery messages is to eliminate the need to
configure that list. On links for which intermediate-system
discovery is administratively disabled, it MAY continue to be
necessary to configure the default intermediate-system list in each
end-system.
Each entry in the list contains (at least) the following configurable
variables:
Simpson expires in six months [Page 20]
DRAFT system discovery June 1993
RouterAddress
An identifier of a default intermediate-system.
Default: (none)
PreferenceLevel
The preferability of the RouterAddress as a default intermediate-
system choice, relative to other intermediate-system interfaces
serving the same prefix on the same link. The Host Requirements
RFC does not specify how this value is to be encoded. The values
used here are defined above.
Default: 255
4.3.2. Implementation
To process an Intermediate-System Advertisement, an end-system scans
the list of Routing-Information extensions contained in it. For each
identifier, the end-system does the following:
- If the prefix size is not zero, the identifier and prefix size are
compared against any identifiers associated with the interface on
which the message was received. If there is a match, the
interface prefix size is set to the advertised prefix size.
- If the identifier is not already present in the end-system's
intermediate-system list, a new entry is added to the list,
containing the identifier along with its accompanying preference
level, and a timer initialized to the Lifetime value from the
advertisement.
- If the identifier is already present in the end-system's
intermediate-system list as a result of a previously-received
advertisement, its preference level is updated and its timer is
reset to the value in the newly-received advertisement.
- If the identifier is already present in the end-system's
intermediate-system list as a result of system configuration, no
change is made to its preference level. There is no timer
associated with a configured identifier.
- If a Media-Access extension is present, the intermediate-system
list is updated with the location information.
Whenever the timer expires in any entry that was created as a result
Simpson expires in six months [Page 21]
DRAFT system discovery June 1993
of a received advertisement, that entry is discarded.
Note that any intermediate-system identifiers acquired from the
"Gateway" subfield of the vendor extensions field of a BOOTP
packet [11] are considered to be configured identifiers; they are
assigned the default preference level of 255, and they do not have
an associated timer.
Note further that any identifier found in the "giaddr" field of a
BOOTP packet [3] identifies a BOOTP forwarder which is not
necessarily a SIP intermediate-system; such an identifier should
not be installed in the end-system's default intermediate-system
list.
To limit the storage needed for the default intermediate-system list,
an end-system MAY choose not to store all of the intermediate-system
identifiers discovered via advertisements. The end-system SHOULD
discard those identifiers with lower preference levels in favor of
those with higher levels. It is desirable to retain more than one
default intermediate-system identifier in the list; if the current
choice of default intermediate-system is discovered to be down, the
end-system may immediately choose another default intermediate-system
without having to wait for the next advertisement to arrive.
Any intermediate-system identifier advertised with a preference level
of zero is not to be used by the end-system as default intermediate-
system identifier. Such an identifier may be omitted from the
default intermediate-system list, unless its timer is being use as a
"black-hole" detection mechanism.
Simpson expires in six months [Page 22]
DRAFT system discovery June 1993
5. End-System Discovery
Within a directly attached link, each system must be able to locate
end-systems with which it desires to communicate. This is
accomplished using the Where-Are-You and I-Am-Here messages described
below. This is independent of any specific media.
When an intermediate-system needs the location of an end-system, it
sends the Where-Are-You solicitation. The target end-system responds
with the I-Am-Here advertisement.
When no intermediate-system advertisements have been heard, an end-
system sends the Where-Are-You solicitation itself. The target end-
system responds with the I-Am-Here advertisement as usual.
When an end-system has heard one or more intermediate-system
advertisements, the default behavior is to send all datagrams to the
preferred intermediate-system. If the target end-system is
accessible on the local link, the intermediate-system sends a
redirect back indicating the appropriate media address.
When an end-system has heard one or more intermediate-system
advertisements, and no zone or prefix-routing is being used, or no
prefix matches any current interface identifier, the end-system can
assume that it is operating as a mobile end-system. The mobile end-
system advertises on a periodic basis, just as an intermediate-
system.
5.1. Solicitations
Every SIP system MUST implement End-System Solicitation for discovery
of local end-systems.
When a system is ready to send a datagram to another system, it
examines its cache of system locations. If no intermediate-system
advertisements have been received, the system MUST send the Where-
Are-You solicitation to prompt the advertisement of the target
system.
If (and only if) no advertisements from the target system are
forthcoming, the system MAY retransmit the Where-Are-You a small
number of times, but then MUST desist from sending more
solicitations.
Simpson expires in six months [Page 23]
DRAFT system discovery June 1993
5.1.1. Implementation
The end-system solicitation is sent to the all-systems multicast.
The end-system solicitations use the same configuration constants as
intermediate-system solicitations.
Unlike intermediate-system solicitations, end-system solicitations
are sent only when a particular end-system location is needed, rather
than on startup.
End-system solicitations are sent using the same periodicity
calculations as intermediate-system solicitations.
Upon receiving a valid advertisement from any intermediate-system, an
end-system MUST NOT send any end-system solicitations.
5.1.2. Receipt
An intermediate-system MUST silently discard any received End-System
Solicitation messages.
An end-system MUST silently discard any received End-System
Solicitation messages that do not satisfy the following validity
checks:
- ICMP Checksum is correct.
- ICMP length (derived from the payload length) is 16 or more
octets.
- Source Address is either 0 or the identifier of a neighbor (an
identifier that matches one of the end-system's own identifiers on
the arrival interface under the prefix mask associated with that
identifer, or the zone associated with that interface).
5.2. Advertisements
Every SIP end-system MUST implement End-System Advertisements.
Usually, end-system advertisements are sent in response to end-system
solicitations. In addition, mobile end-system advertisements and
service end-system advertisements (described below) are sent on a
periodic basis.
The end-system advertisements include such important information as
Simpson expires in six months [Page 24]
DRAFT system discovery June 1993
the media address to access the system, and neighboring
intermediate-systems heard.
5.2.1. Implementation
The periodic mobile end-system advertisement is sent to the all-
routers multicast.
The single end-system advertisement in respnse to a solicitation is
sent to the all-systems multicast.
In either case, the scope is set to local.
CONTROVERIAL: The all-systems multicast is used for end-system
advertisements, rather than responding directly to the soliciting
system. This is under the assumption that all intermediate-
systems need to update the list of active end-systems, when the
query is sent by a router. Logically, the response could be sent
to all-routers.
However, when the query is sent by an end-system, there are no
routers present. The response could be sent directly to the
requesting end-system.
There is no easy way to determine that the sender was an
intermediate-system rather than an end-system. The only multicast
which covers both cases is all-systems.
Mobile advertisements use similar configuration constants and
variables as intermediate-system advertisements.
Mobile advertisements are sent using the same periodicity
calculations as intermediate-system advertisements.
Advertising interfaces are established and terminated in the same
manner as intermediate-system advertisements.
Simpson expires in six months [Page 25]
DRAFT system discovery June 1993
6. Service Discovery
Each system offering one of the special configuration services
detailed below, whether an end-system or intermediate-system,
includes that service availability in every advertisement that it
sends. All systems discover the location of these services simply by
listening for the advertisements. This eliminates the need for
manual configuration, periodic probes, and special handling of
certain packet types by intermediate-systems.
The learned service information is included in any neighboring
intermediate-system advertisements. In this fashion, the
intermediate-system advertisements provide a summary of all available
network services, and pass information beyond the link where the
advertisement originated. This results in a reduction of network
traffic when compared to the broadcast or multicast of service
discovery requests/replies over a wide area.
The initial services listed here are primarily concerned with
configuration. The locations of other facilities may be learned from
these basic servers.
Domain Name Service
Before a system can communicate with another system, it must learn
that system's identifiers and location. The Domain Name System
(DNS) is usually used for this purpose.
In the past, this was accomplished by reading a list of servers
from a (possibly remote) configuration file at startup time. Some
systems discovered servers by sending periodic probes to a
broadcast or multicast address. Both of these methods have
serious drawbacks. Configuration files must be maintained
manually (a significant administrative burden when ther are large
numbers of systems), and are unable to track dynamic changes in
DNS availability. Periodic probes are restricted from using
recursion (see Host Requirements -- Application and Support [2],
Section 6.1.3.2), and are thus limited to information about the
local domain.
In practice, only systems which are users or stub resolvers of the
DNS can use the DNS server advertisements. Full-Service resolvers
MUST continue to be manually configured to ensure a heirarchy of
believability within the network.
Self-Configuration Service
Before a system can communicate with another system, it must learn
Simpson expires in six months [Page 26]
DRAFT system discovery June 1993
its own identity. The Bootstrap Protocol (BOOTP) is frequently
used for this purpose.
In the past, this was accomplished by ad hoc passing of BOOTP
requests by routers. This method has several serious drawbacks.
Presence of the feature cannot be relied upon. It is not of much
use for mobile, roving or portable systems.
6.1. Solicitations
Every SIP end-system SHOULD implement End-System Solicitation for
discovery of local services.
When a system is ready to use a particular service, it examines its
cache of such services. If no intermediate-system or other service
advertisements have been received, the system MAY send the Where-
Are-You solicitation to prompt the advertisement of the service.
If (and only if) no advertisements from desired services are
forthcoming, the system MAY retransmit the Where-Are-You a small
number of times, but then MUST desist from sending more
solicitations.
6.1.1. Implementation
The service solicitation is sent to the special multicast for each
particular service, with the scope set to local.
The service solicitations use the same configuration constants as
intermediate-system and end-system solicitations.
Unlike intermediate-system solicitations, service solicitations are
sent only when a particular service is utilized, rather than on
startup.
Service solicitations are sent using the same periodicity
calculations as intermediate-system and end-system solicitations.
Upon receiving a valid advertisement from any intermediate-system,
the system MUST NOT send any service solicitation.
Service solicitations require the same validity checks as end-system
solicitations.
Simpson expires in six months [Page 27]
DRAFT system discovery June 1993
6.2. Advertisements
Like intermediate-system and mobile end-system advertisements,
service end-systems advertisements are sent on a periodic basis.
Services offered by intermediate-systems are included in the
intermediate-system advertisements described above.
6.2.1. Implementation
The service advertisement is sent to the all-systems multicast, with
the scope set to local.
CONTROVERIAL: The all-systems multicast is used for service
advertisements, rather than different multicasts for each service.
This is under the assumption that all systems need to learn of
services.
This corresponds to the design for intermediate-system
advertisements. Thus, intermediate-system advertisements can be
viewed as a special case of service advertisements.
This ensures that the design will operate when there are no
routers, and when the routing protocols are still initializing.
The service advertisements use similar configuration constants and
variables as intermediate-system advertisements.
Service advertisements are sent using the same periodicity
calculations as intermediate-system advertisements.
Advertising interfaces are established and terminated in the same
manner as intermediate-system advertisements.
When any system ceases to offer an advertised service, the system
SHOULD transmit a final multicast advertisement on the interface,
identical to its previous transmission, but with a Lifetime field of
zero.
Simpson expires in six months [Page 28]
DRAFT system discovery June 1993
7. Self Discovery
7.1. End-Systems
At startup, each SIP end-system solicits the advertisements of
intermediate-systems, as described in Intermediate-System Discovery
above. Until an intermediate-system is discovered, an end-system is
limited to accessing systems and services for the links to which it
is directly attached.
In the absence of an intermediate-system, each SIP end-system
solicits the advertisements of services as described in Service
Discovery above. Until self-configuration services are discovered,
an end-system is limited to accessing systems and services according
to prior configuration.
7.1.1. Zone Determination
Until an intermediate-system is discovered, an end-system assumes a
zone number of zero. When combined with any IEEE-802 number found in
the machine, or other identifier negotiated at the link level, this
yields a local identifier which is unique to the system.
When an intermediate-system is discovered, the advertisements are
examined for zone information, as described in Intermediate-System
Discovery above. If all advertised zone values are zero, then zone
routing is not available beyond that link. If more than one zone
number is discovered for the same interface, only the highest zone
number is used.
When there is more than one interface on a multi-homed end-system,
each interface MUST answer to all of the local identifers generated.
When more than one IEEE-802 number is available, the primary system
identifier is composed of the highest zone discovered, combined with
the highest IEEE-802 number found.
7.1.2. Initialization
Once a system has becomed locally addressable, it can engage in
exchanges with local servers. Some of these local servers could be a
bootstrap service, for loading and configuring the system. Another
server could be a registration service, in charge of managing the
local name and identifier space.
Simpson expires in six months [Page 29]
DRAFT system discovery June 1993
When the registration service is unable to find a match for the
system, the system SHOULD request the operator to provide a name for
the system. The registration service would be responsible for
ensuring uniqueness, and assigning appropriate identifiers for the
name.
Further specification of such services is beyond the scope of this
document.
7.1.3. Identifier Determination
Once the Domain Name has been determined for a system, the Domain
Name Service SHOULD be consulted to determine the globally advertised
identifiers for the system. In this fashion, system is coordinated
with the most current information actually propagated within the
internet.
Each DNS identifier has a Time-To-Live associated with it. When any
identifier expires, another request SHOULD be made to the DNS for a
list of identifiers.
When there is more than one interface on a multi-homed end-system,
each interface MUST answer to all of the identifers learned.
When more than one identifier is returned for a system, the primary
system identifier is the identifier with the highest TTL, or the
first listed identifier of those with the highest TTL.
7.1.4. Prefix Determination
The prefix size is dynamically learned from matching interface
identifiers against the intermediate-system advertisements, as
described in Intermediate-System Discovery above.
Unlike previous practice, an end-system prefix sizes SHOULD NOT be
preconfigured. Any preconfigured value MUST be superceded by new
values and changes propagated in intermediate-system advertisements.
7.1.5. Changing Identifiers
7.2. Intermediate-Systems
The zones and prefixes are assigned by hand.
Simpson expires in six months [Page 30]
DRAFT system discovery June 1993
8. Next-Hop Determination
When an end-system has not heard any intermediate-system
advertisements, it is assumed that all end-systems are only
accessible on the local link.
multi-homed
preferred router
smart selection
local redirect
remote redirect
Simpson expires in six months [Page 31]
DRAFT system discovery June 1993
8.1. Examples of Use
Simple case -- J to K on the same fully-connected link.
J sends the Where-Are-You (which contains its own media address)
to all-systems. K sends the I-Am-Here (which contains its own
media address) directly to all-systems. At this point, they
both know that they can talk directly to each other, without
regard to subnet.
Routed case -- J to K not on the same fully-connected link.
If no resource reservation or policy routing is desired, J
simply sends its packets directly to the "preferred" router that
it has learned from the Advertisements. If there is a better
router for the first-hop, that router sends the I-Am-Here
redirect to J, but never-the-less forwards the packet.
In the presence of RR or PR, J sends a Where-Are-You to the
"preferred" router that it has learned from the Advertisements.
That router always returns an I-Am-Here redirect (even if the
correct hop is itself), which contains the requested RR or PR
status information. J then sends its packets to the first-hop
router as determined from the I-Am-Here.
General case -- J to K over disconnected partial mesh (radio/framerelay).
J periodically sends the I-Am-Here (which contains its own media
address, and the addresses of its "heard" routers) to the
all-routers multicast. The routers use such messages to
construct a map of the current state of the topology. The
routers now know who J hears, and who hears J.
If the routing map doesn't contain a current whereabouts of K,
the Destination Unreachable message is returned by the "best"
router on J's "heard" list.
If the routing map contains the current whereabouts of K, the
"best" router on K's "heard" list sends a Where-Are-You to K,
with a list of routers which can hear K. The list is ordered by
the intersection of those routers which can also hear J,
minimizing the number of hops.
When K hears the Where-Are-You, it sends the I-Am-Here to the
all-systems address. The "best" router on J's "heard" list
sends an I-Am-Here redirect to J, with a substitute list of
routers which can hear J. The list is ordered by the
intersection of those routers which can also hear K.
Simpson expires in six months [Page 32]
DRAFT system discovery June 1993
Of course, J may have heard K's I-Am-Here directly.
At this point, the routing fabric knows which routers are heard
by J and K, and which routers can hear J and K. J and K know
whether they can hear each other directly. If not, they know
the "best" next-hop router (which may not be the same in both
directions).
Unlike the fully-connected scenarios, this scheme requires that
the I-Am-Here is sent from time to time to keep the map updated.
However, only routers need store the information.
Simpson expires in six months [Page 33]
DRAFT system discovery June 1993
9. Additional ICMP Packets
The Packet format and basic facilities are already defined for ICMP
[3], as modified for SIP [1].
Up-to-date values of the ICMP Type field are specified in the most
recent "Assigned Numbers" RFC [2]. This document concerns the
following values:
<TBD> Where-Are-You
<TBD> I-Am-Here
Simpson expires in six months [Page 34]
DRAFT system discovery June 1993
9.1. Where-Are-You
A summary of the Where-Are-You message format is shown below. The
fields are transmitted from left to right.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Code | Checksum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ System Identifier +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Extensions ...
+-+-+-+-+-+-+-+-+-+-+-+-+
Type
<TBD>
Code
The Code field is one octet. Up-to-date values of the I-Am-Here
Code field are specified in the most recent "Assigned Numbers" RFC
[2]. Current values are assigned as follows:
0 RESERVED
1 End-System Solicitation
2 Intermediate-System Solicitation
Checksum
The ICMP Checksum.
System Identifier
The System Identifier field is eight octets in length, and
contains an identifier of the system which is sought. When the
identifer of the system is unknown, the field is zero filled.
Extensions
The Extensions field is variable in length and contains zero or
Simpson expires in six months [Page 35]
DRAFT system discovery June 1993
more Extensions. These Extensions are described in a later
section.
The contents of the Reserved field are ignored. Future backward-
compatible changes to the protocol may specify the contents of the
Reserved field or of additional octets at the end of the message.
Simpson expires in six months [Page 36]
DRAFT system discovery June 1993
9.1.1. End-System Solicitation
The End-System Solicitation contains the following values:
- In the Destination Address field of the SIP header: For service
solicitations, the special multicast group associated with the
service. For other solicitations, the all-systems multicast. In
either case, the scope is set to local.
- In the Source Address field of the SIP header: any identifier
associated with the sending interface. It MAY contain zero if the
system has not yet determined an identifier for the interface.
- In the Code field of the ICMP header: 1 for End-System
Solicitation.
- For each intermediate-system advertisement that has been heard,
the System-Heard extension.
- For interfaces which are not point-to-point links, the Media-
Access extension.
In the unlikely event that not all extensions fit in a single
solicitaion, as constrained by the MTU of the link, the remaining
extensions are removed. Only a single solicitation is sent.
Simpson expires in six months [Page 37]
DRAFT system discovery June 1993
9.1.2. Intermediate-System Solicitation
The Intermediate-System Solicitation contains the following values:
- In the Destination Address field of the SIP header: the all-
routers multicast, with the scope set to local.
- In the Source Address field of the SIP header: any identifier
associated with the sending interface. It MAY contain zero if the
system has not yet determined an identifier for the interface.
- In the Code field of the ICMP header: 2 for Intermediate-System
Solicitation.
- For each of that system's interface identifiers other than the
primary identifier, the Other-Identifier extension, with the
prefix size set to zero.
- For each intermediate-system advertisement that has been heard,
the System-Heard extension.
- For interfaces which are not point-to-point links, the Media-
Access extension.
In the unlikely event that not all extensions fit in a single
solicitaion, as constrained by the MTU of the link, multiple
solicitations are sent, with each except the last containing as many
extensions as can fit.
Simpson expires in six months [Page 38]
DRAFT system discovery June 1993
9.2. I-Am-Here
A summary of the I-Am-Here message format is shown below. The fields
are transmitted from left to right.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Code | Checksum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sequence Number | LifeTime |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ System Identifier +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Extensions ...
+-+-+-+-+-+-+-+-+-+-+-+-+
Type
<TBD>
Code
The Code field is one octet. Up-to-date values of the I-Am-Here
Code field are specified in the most recent "Assigned Numbers" RFC
[2]. Current values are assigned as follows:
0 RESERVED
1 End-System Advertisement
2 Intermediate-System Advertisement
3 Local Redirect
4 Remote Redirect
Checksum
The ICMP Checksum.
Sequence Number
The Sequence Number field is two octets in length, and contains
the number of I-Am-Here messsages sent since the system was
initialized. This number MUST include this advertisement.
Simpson expires in six months [Page 39]
DRAFT system discovery June 1993
LifeTime
The LifeTime field is two octets in length, and indicates the
seconds remaining before the entry is considered invalid.
System Identifier
The System Identifier field is eight octets in length, and
contains the primary identifier for this system. Other
identifiers are indicated with the Other-Identifier extension.
Extensions
The Extensions field is variable in length and contains zero or
more Extensions. These Extensions are described in a later
section.
Simpson expires in six months [Page 40]
DRAFT system discovery June 1993
9.2.1. End-System Advertisement
The End-System Advertisement contains the following values:
- In the Destination Address field of the SIP header: For periodic
mobile end-system advertisements, the all-routers multicast. For
other end-system advertisements, the all-systems multicast. In
either case, the scope is set to local.
- In the Source Address field of the SIP header: For service
advertisements, the primary identifier associated with that
system. For responses to solicitations, the identifier specified
in the solicitation.
- In the Code field of the ICMP header: 1 for End-System
Advertisement.
- In the Lifetime field: the interface's configured
AdvertisementLifetime.
- For each of that system's interface identifiers other than the
primary identifier, the Other-Identifier extension, with the
prefix size set to zero.
- For each service advertisement that is offered, the Service-
Information extension.
- For each intermediate-system advertisement that has been heard,
the System-Heard extension.
- For interfaces which are not point-to-point links, the Media-
Access extension.
In the unlikely event that not all extensions fit in a single
advertisement, as constrained by the MTU of the link, multiple
advertisements are sent, with each except the last containing as many
extensions as can fit.
Simpson expires in six months [Page 41]
DRAFT system discovery June 1993
9.2.2. Intermediate-System Advertisement
The Intermediate-System Advertisement contains the following values:
- In the Destination Address field of the SIP header: the all-
systems multicast, with the scope set to local.
- In the Source Address field of the SIP header: the primary
identifier of the system. The same identifier is used for all
interfaces.
- In the Code field of the ICMP header: 2 for Intermediate-System
Advertisement.
- In the Lifetime field: the interface's configured
AdvertisementLifetime.
- For each of that interface's identifiers whose Advertise flags are
TRUE, the Routing-Information extension.
- For each of that interface's recently changed identifiers, the
Change-Identifier extension.
- For each of that system's other interface's identifiers which have
not already been included through prefix subsumption, the Other-
Identifier extension.
- For each service that is offered, or has been learned from another
advertisement, the Service-Information extension.
- For each intermediate-system advertisement that has been heard,
the System-Heard extension.
- For interfaces which are not point-to-point links, the Media-
Access extension.
In the unlikely event that not all extensions fit in a single
advertisement, as constrained by the MTU of the link, multiple
advertisements are sent, with each except the last containing as many
extensions as can fit.
Simpson expires in six months [Page 42]
DRAFT system discovery June 1993
10. Extensions
Extensions allow variable amounts of information to be carried within
each Advertisement or Advertisement packet. Some extensions are
common to both packet types.
The end of the list of Extensions is indicated by the Payload Length
of the SIP packet.
A summary of the Extensions format is shown below. The fields are
transmitted from left to right.
0 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length | Data ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type
The Type field is one octet and indicates the type of Extension.
Up-to-date values of the Extension Type field are specified in the
most recent "Assigned Numbers" RFC [2]. Current values are
assigned as follows:
1 Media-Access
2 Change-Identifier
3 Other-Identifier
4 System-Heard
5 Routing-Information
6 Service-Information
7 Transit-Information
8 Authentication
9 Security-Information
10 Redirected-Header
Length
The Length field is one octet and indicates the length of the Data
field which has been used.
Each Extension ends on an octet boundary which is an integral
multiple of four octets. Any unused portion of the Data field is
padded with zeros.
Simpson expires in six months [Page 43]
DRAFT system discovery June 1993
length actual
0 through 2 4
3 through 6 8
7 through 10 12
Data
The Data field is zero or more octets and contains the value or
other information for this Extension. The format and length of
the Data field is determined by the Type and Length fields.
Simpson expires in six months [Page 44]
DRAFT system discovery June 1993
10.1. Media-Access
A summary of the Media-Access extension format is shown below. The
fields are transmitted from left to right.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length | Media Type |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAC Address ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type
1
Length
>= 3
Media Type
The Media Type field is two octets in length. The value of this
field is the same as the Hardware Type used in ARP. Up-to-date
values of the Hardware Type field are specified in the most recent
"Assigned Numbers" RFC [2].
[Should we use the ifType from MIB-II instead?]
MAC Address
The MAC Address field is variable in length, and contains the media
address which is used to access this system.
The MAC Address is always specified in Canonical order.
The Media-Access extension MUST be included in those messages sent from
an interface on a multi-access media.
It MUST NOT be included in a message sent from a point-to-point
interface, or in messages such as the Remote Redirect which pass through
intermediate systems.
Simpson expires in six months [Page 45]
DRAFT system discovery June 1993
10.2. Change-Identifier
A summary of the Change-Identifier extension format is shown below. The
fields are transmitted from left to right.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length | |Prefix Size|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ Old Identifier +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ New Identifier +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type
2
Length
22
Prefix Size
The Prefix Size field is six bits in length, and indicates the number
of bits in both Identifiers which define the prefix mask for the
link. The value ranges from 0 to 62.
End-Systems MUST have a Prefix Size of zero.
Old Identifier
The Old Identifier field is eight octets in length, and contains the
old identifier for this interface.
New Identifier
The New Identifier field is eight octets in length, and contains one
of the identifiers for this interface. This may be another
identifier for the same interface that sent the message, or may
Simpson expires in six months [Page 46]
DRAFT system discovery June 1993
identify another interface on the same system which sent the message.
Simpson expires in six months [Page 47]
DRAFT system discovery June 1993
10.3. Other-Identifier
A summary of the Other-Identifier extension format is shown below. The
fields are transmitted from left to right.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length | |Prefix Size|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Metric |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ Interface Identifier +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type
3
Length
14
Prefix Size
The Prefix Size field is six bits in length, and indicates the number
of bits in the Interface Identifier which define the prefix mask for
the link. The value ranges from 0 to 62.
If the Interface Identifier does not indicate a valid prefix, the
value is zero.
End-Systems MUST have a Prefix Size of zero.
Metric
The Metric field is four octets in length, and indicates the
preference level for use of this system to forward packets to the
Interface Identifier. Lower values indicate greater preference.
End-Systems MUST set this field to zero.
Interface Identifier
The Interface Identifier field is eight octets in length, and
Simpson expires in six months [Page 48]
DRAFT system discovery June 1993
contains one of the identifiers for this system. This may be another
identifier for the same interface that sent the message, or may
identify another interface on the same system which sent the message.
Every identifier for every interface is listed in each I-Am-Here
message.
This supports multiple identifiers per interface, as well as multi-homed
systems.
When a number of interfaces, such as point-to-point interfaces, may be
aggregated with the same prefix, only one extension need be included.
This enables end-systems to determine the best next-hop without sending
a Where-Are-You solicitation when the next-hop is on another interface
attached to the same advertising system.
Simpson expires in six months [Page 49]
DRAFT system discovery June 1993
10.4. System-Heard
A summary of the System-Heard extension format is shown below. The
fields are transmitted from left to right.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length | Speed |D|B|Prefix Size|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MRU | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ System Identifier +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sequence Number | Remaining LifeTime |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Quality |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Advertisement Count |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Error Count |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type
4
Length
30
Designated Bit
The Designated Bit indicates that the System Identifier is the
Designated Router.
Backup Bit
The Backup Bit indicates that the System Identifier is the Backup
Designated Router.
Prefix Size
The Prefix Size field is six bits in length, and indicates the number
of bits in the System Identifier which define the prefix mask for the
Simpson expires in six months [Page 50]
DRAFT system discovery June 1993
link. The value ranges from 0 to 62.
If the System Identifier does not indicate a valid prefix, the value
is zero.
End-Systems MUST have a Prefix Size of zero.
MRU
The Maximum Receive Unit field is two octets in length, and indicates
the maximum size packet that the system will receive over the link.
Speed
The Speed field is one octet in length, and indicates the speed of
the link over which the advertisement or solicitation was heard.
Higher values indicate greater speed. The speed value is related to
int( 10 * ln( speed / 100 ) ) in bits per second.
After considerable trial and error, this formula was used because
it gave the best distribution for distinguishing medium speed
links, and fit reasonably well in the realm of currently
envisioned speeds. It has an upper limit of 11.87 Terabits per
second. (It also has a convenient button on the calculator.)
0 link is down
1 - 9 reserved
10 300 or less
24 1,200 96 1,544,000 T1
31 2,400 99 2,048,000 E1
38 4,800 106 4,000,000 Token Ring
42 7,200 110 6,312,000 T2
45 9,600 115 10,000,000 Ethernet
49 14,400 119 16,000,000 Token Ring
52 19,200
56 28,800 130 44,736,000 T3
59 38,400 142 155,520,000 STS-3,STM-1
63 57,600 202 622,080,000 STS-12,STM-4
64 64,000 216 2,488,320,000 STS-48,STM-16
71 128,000
73 153,600
78 256,000
System Identifier
The System Identifier field is eight octets in length, and contains
the primary identifier for the system, taken from the Source Address
Simpson expires in six months [Page 51]
DRAFT system discovery June 1993
field of the advertisement heard.
Sequence Number
The Sequence Number field is two octets in length, and contains the
last heard sequence number from the system.
Remaining LifeTime
The Remaining LifeTime field is two octets in length, and indicates
the seconds remaining before the entry is considered invalid.
Quality
The Quality field is four octets in length, and contains an
indication of the signal quality received from this system. Higher
values indicate greater quality.
Advertisement Count
The Advertisement Count field is four octets in length, and indicates
the number of advertisements that have been heard from the identified
system.
Error Count
The Error Count field is four octets in length, and indicates the
number of errors which have been detected on the link with the
identified system.
This extension is included in every I-Am-Here.
Simpson expires in six months [Page 52]
DRAFT system discovery June 1993
10.5. Routing-Information
A summary of the Routing-Information extension format is shown below.
The fields are transmitted from left to right.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length | Preference |D|B|Prefix Size|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MRU | Zone | Priority |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ Interface Identifier +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type
5
Length
14
Preference
The Preference field is one octet in length, and indicates the
preference level for use of this system to forward packets to the
Interface Identifier. Higher values indicate greater preference.
Designated Bit
The Designated Bit indicates that the system is the Designated
Router.
Backup Bit
The Backup Bit indicates that the system is the Backup Designated
Router.
Prefix Size
The Prefix Size field is six bits in length, and indicates the number
of bits in the Interface Identifier which define the prefix mask for
the link. The value ranges from 0 to 62.
Simpson expires in six months [Page 53]
DRAFT system discovery June 1993
If the Interface Identifier does not indicate a valid prefix, the
value is zero.
MRU
The Maximum Receive Unit field is two octets in length, and indicates
the maximum size packet that the system will receive over the link.
Zone
The Zone field is one octet in length, and indicates the zone for the
link. A value of zero indicates that no zone has been assigned.
Priority
The Priority field is one octet in length, and indicates the priority
for election to Designated Backup. A value of zero indicates that
the system is not eligible.
Interface Identifier
The Interface Identifier field is eight octets in length, and
contains one of the identifiers for this interface.
This extension is sent only by Intermediate-Systems.
When more than one of these extensions is present, the Designated and
Backup bits, MRU, Zone and Priority fields MUST be the same in each
copy.
Simpson expires in six months [Page 54]
DRAFT system discovery June 1993
10.6. Service-Information
A summary of the Service-Information extension format is shown below.
The fields are transmitted from left to right.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length | Service |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sequence Number | Remaining LifeTime |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ System Identifier +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Data ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type
6
Length
>= 14
Service
The Service field is two octets in length. The value of this field
is usually the same as the well-known port number. Up-to-date values
of the Service field are specified in the most recent "Assigned
Numbers" RFC [2].
Sequence Number
The Sequence Number field is two octets in length, and contains the
last heard sequence number from the system.
Remaining LifeTime
The Remaining LifeTime field is two octets in length, and indicates
the seconds remaining before the entry is considered invalid.
System Identifier
The System Identifier field is eight octets in length, and contains
Simpson expires in six months [Page 55]
DRAFT system discovery June 1993
the primary identifier for this system.
Data
The Data field is variable in length, and contains information
specific to the service. For example, it could contain a string with
the description of the service.
The format of the Data field is entirely service dependent, and is
always treated as a binary value.
Simpson expires in six months [Page 56]
DRAFT system discovery June 1993
10.7. Transit-Information
A summary of the Transit-Information extension format is shown below.
The fields are transmitted from left to right.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length | | QoS |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Metric |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type
7
Length
6
QoS
The Quality of Service field is one octet in length, and indicates a
service for which transit will be accepted.
Metric
The Metric field is four octets in length, and indicates the
preference level for use of this network link to forward packets of
the indicated Quality of Service. Lower values indicate greater
preference.
This extension is included in the Intermediate-System I-Am-Here to
indicate that it will accept transit traffic. If this extension is not
included, other intermediate-systems will treat the link as a stub
network.
Simpson expires in six months [Page 57]
DRAFT system discovery June 1993
10.8. Authentication
A summary of the Authentication extension format is shown below. The
fields are transmitted from left to right.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Data ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type
8
Length
22
Data
The Data field is variable in length, and contains information
specific to the authentication method,
This extension is included in any I-Am-Here.
Simpson expires in six months [Page 58]
DRAFT system discovery June 1993
10.9. Security-Information
A summary of the Security-Information extension format is shown below.
The fields are transmitted from left to right.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Compartments ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type
9
Length
22
Compartments
The Compartments field is sixteen octets in length.
This extension is included in the Intermediate-System I-Am-Here to
indicate that it will accept transit traffic for the designated security
compartments.
Simpson expires in six months [Page 59]
DRAFT system discovery June 1993
10.10. Redirected-Header
A summary of the Redirected-Header extension format is shown below. The
fields are transmitted from left to right.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| SIP Header ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type
10
Length
22
SIP Header
The SIP Header field is 48 octets in length.
This extension is included in the Local or Remote Redirect to verifiy
the traffic that is being redirected.
Simpson expires in six months [Page 60]
DRAFT system discovery June 1993
Security Considerations
References
[1]
[2]
Acknowledgments
Chair's Address
The working group can be contacted via the current chairs:
Author's Address
Questions about this memo can also be directed to:
William Allen Simpson
Daydreamer
Computer Systems Consulting Services
P O Box 6205
East Lansing, MI 48826-6205
EMail: Bill.Simpson@um.cc.umich.edu
Simpson expires in six months [Page 61]
DRAFT system discovery June 1993
Table of Contents
1. Terminology ........................................... 1
2. Criteria .............................................. 2
3. Design Overview ....................................... 8
3.1 System Identification ........................... 9
3.2 Multicast Support ............................... 10
4. Intermediate-System Discovery ......................... 11
4.1 Solicitations ................................... 11
4.1.1 Constants ....................................... 12
4.1.2 Implementation .................................. 12
4.1.3 Receipt ......................................... 13
4.2 Advertisements .................................. 13
4.2.1 Constants ....................................... 15
4.2.2 Configuration ................................... 15
4.2.3 Implementation .................................. 17
4.2.4 Receipt ......................................... 20
4.3 Processing Advertisements ....................... 20
4.3.1 Configuration ................................... 20
4.3.2 Implementation .................................. 21
5. End-System Discovery .................................. 23
5.1 Solicitations ................................... 23
5.1.1 Implementation .................................. 24
5.1.2 Receipt ......................................... 24
5.2 Advertisements .................................. 24
5.2.1 Implementation .................................. 25
6. Service Discovery ..................................... 26
6.1 Solicitations ................................... 27
6.1.1 Implementation .................................. 27
6.2 Advertisements .................................. 28
6.2.1 Implementation .................................. 28
7. Self Discovery ........................................ 29
7.1 End-Systems ..................................... 29
7.1.1 Zone Determination .............................. 29
7.1.2 Initialization .................................. 29
7.1.3 Identifier Determination ........................ 30
7.1.4 Prefix Determination ............................ 30
7.1.5 Changing Identifiers ............................ 30
7.2 Intermediate-Systems ............................ 30
8. Next-Hop Determination ................................ 31
Simpson expires in six months [Page ii]
DRAFT system discovery June 1993
8.1 Examples of Use ................................. 32
9. Additional ICMP Packets ............................... 34
9.1 Where-Are-You ................................... 35
9.1.1 End-System Solicitation ......................... 37
9.1.2 Intermediate-System Solicitation ................ 38
9.2 I-Am-Here ....................................... 39
9.2.1 End-System Advertisement ........................ 41
9.2.2 Intermediate-System Advertisement ............... 42
10. Extensions ............................................ 43
10.1 Media-Access .................................... 45
10.2 Change-Identifier ............................... 46
10.3 Other-Identifier ................................ 48
10.4 System-Heard .................................... 50
10.5 Routing-Information ............................. 53
10.6 Service-Information ............................. 55
10.7 Transit-Information ............................. 57
10.8 Authentication .................................. 58
10.9 Security-Information ............................ 59
10.10 Redirected-Header ............................... 60
SECURITY CONSIDERATIONS ...................................... 61
REFERENCES ................................................... 61
ACKNOWLEDGEMENTS ............................................. 61
CHAIR'S ADDRESS .............................................. 61
AUTHOR'S ADDRESS ............................................. 61